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bstract

he elastic properties, in particular the tensile modulus (Young’s modulus) and Poisson ratio, of porous alumina, zirconia, and alumina–zirconia
omposite ceramics are studied using the resonance frequency method and the results compared with theoretical predictions. Starch is used as
pore-forming agent, so that the resulting microstructure is essentially of the matrix-inclusion type (with large bulk pores, connected by small

hroats when a percolation threshold is exceeded). It is found that for this type of microstructure the porosity dependence of the Young’s modulus

s significantly below the upper Hashin–Shtrikman bound and the power-law prediction; it corresponds well, however, to a recently proposed
xponential relation and to an empirical volume-weighted average of the upper and lower Hashin–Shtrikman bounds. Results for all three types of
eramics indicate that – in the porosity range considered, i.e. up to approximately 50% – the Poisson ratio depends only slightly on porosity.

2009 Elsevier Ltd. All rights reserved.
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. Introduction

Porous ceramics are widely used for a variety of applications,
anging from filters, membrane supports and catalyst carriers to
hermal insulation, lightweight structural components, biomed-
cal implants and bone tissue engineering scaffolds.1–4 The
ntroduction of porosity into materials reduces the weight of
omponents and may thus significantly improve their specific
roperties (i.e. the properties per unit mass).5 In particular,
orous ceramics generally exhibit lower elastic moduli and
ower thermal conductivity than their fully dense counterparts
i.e. the solid phase itself), since the modulus or conductivity
f the pore phase can in many cases be neglected in compar-
son to the corresponding solid phase property. Thus, porous
eramics are more compliant (i.e. less rigid) and more efficient
nsulators (i.e. their thermal resistivity is enhanced). Powerful

elations have been recently proposed which can predict the
orosity dependence of some of these properties, in particu-
ar the Young’s modulus, for common microstructures more

∗ Corresponding author.
E-mail address: pabstw@vscht.cz (W. Pabst).
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r less quantitatively.6–9 On the other hand, for some prop-
rties – among them the Poisson ratio – simple predictive
elations are not available up to now, and even to the ques-
ion whether the effective Poisson ratio decreases, increases
r remains constant with increasing porosity, there is no uni-
ersally acknowledged answer so far. These difficulties arise
ecause the porosity (volume fraction of pores) is but one of
he many microstructural descriptors and because higher order

icrostructural information10 is usually not accessible without
n immense effort (e.g. using image analysis or tomographical
ethods), far exceeding that of directly measuring the prop-

rty in question. In the general case of porous materials with
rbitrary microstructures the only predictions that can be made
re in the form of very wide bounds, restricting the domain of
dmissible effective property values (e.g. the Voigt bound11 or
he Hashin–Shtrikman upper bound12 for the elastic moduli and
he thermodynamic stability bounds for the Poisson ratio13). In
pite of this unpleasant situation, for common microstructures
e.g. materials made with pore-forming agents) simple predic-

ions are available for the Young’s modulus, and the various
heoretical predictions for the Poisson ratio are relatively close
s long as the porosities are not too high. It is the purpose of
his paper to demonstrate the capability of different relations

mailto:pabstw@vscht.cz
dx.doi.org/10.1016/j.jeurceramsoc.2009.03.033
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o describe the Young’s-modulus-vs.-porosity and the Poisson-
atio-vs.-porosity dependence by comparing the predictions
ith experimentally measured values. We investigate porous

lumina, zirconia and alumina–zirconia composite ceramics pre-
ared with starch as a pore-forming agent (including alumina
repared by starch consolidation casting) and measured by the
esonant frequency method.

. Theoretical

The effective Young’s modulus of porous ceramics of arbi-
rary microstructure is bounded from above by the Voigt
ound,10,11

V = E0 (1 − φ) , (1)

here φ is the porosity (volume fraction of pores), E0 the
oung’s modulus of the solid phase and the subscript “V”
enotes the Voigt bound. If the microstructure is isotropic,
he effective Young’s modulus is bounded by the upper
ashin–Shtrikman bound12 (subscript “HS”, superscript “+”),
hich is approximately6–9

+
HS = E0

(
1 − φ

1 + φ

)
. (2)

Lower Young’s modulus bounds do not exist for porous
aterials (more precisely, the Reuss bound and the lower
ashin–Shtrikman bound degenerate to zero for all finite porosi-

ies, i.e. φ > 0).6–9 Moreover, no comparable bounds exist for the
oisson ratio. For porous materials (with infinite phase contrast,

.e. an infinite ratio of the solid and pore phase bulk and shear
oduli) there are no bounds in addition to the universal Poisson

atio bounds

1 < ν < 0.5, (3)

hich follow from thermodynamic stability arguments or,
n other words, from the required non-negativity of elastic

oduli.13,14

In the absence of general lower bounds it is useful to dispose
t least of special relations which may be used to approxi-
ately predict (estimate) the porosity dependence of the elastic
oduli for certain types of microstructures. Physically mean-

ngful relations of this kind should reduce to the exact solution
linear approximation) in the dilute limit (i.e. for very small
orosities) and must not violate the Voigt bound (or the upper
ashin–Shtrikman bound if the microstructure is isotropic) at

ny porosity value. For realistic solid phase Poisson ratios in the
ange 0.1–0.4 and isometric pore shape the dilute limit approx-
mation for the effective Young’s modulus is6–8,10

= E0 (1 − 2φ) . (4)

We note in passing that this linear relation is at the same

ime identical to the self-consistent prediction15,16 when a
erfectly complaint pore phase is assumed (as usual). These
elf-consistent schemes have been criticized from a fundamen-
al theoretical standpoint by Torquato.10 In particular, since this

a

E
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inear relation (and eo ipso also the self-consistent models) pre-
ict a spurious percolation threshold (where E becomes zero) at
porosity of 50% (φ = 0.5),10 which would erroneously imply

he non-existence of solid porous materials at higher porosi-
ies, it is clear that non-linear relations are required to describe
eal material behavior, because in real materials the percola-
ion threshold–if present at all–depends on the details of the

icrostructure (beyond porosity). Now there are – apart from the
pper Hashin–Shtrikman bound, Equation (2) – two meaning-
ul non-linear relations that reduce to the linear approximation,
quation (4), in the dilute limit and at the same time do not
iolate the upper bounds. The first is the power-law relation6–9

= E0(1 − φ)2, (5)

he second is the exponential relation6–9

= E0 exp

( −2φ

1 − φ

)
. (6)

Both can be derived using a functional equation
pproach.17,18 The latter predicts significantly lower elas-
ic moduli, and its conductivity counterpart (where the
umerical coefficient is 3/2 insetad of 2) has turned out to
rovide a good prediction for the porosity dependence of the
hermal conductivity for porous alumina ceramics prepared
ith pore-forming agents.19

Apart from these two theoretically relatively well founded
elations, another, more empirical, relation may be devised,
ased on the fact that the effective properties of many two-
hase composites tend to be close to the upper bound when
he high-value property phase is prevailing, and vice versa.

ith increasing content of the second phase (i.e. the low-value-
roperty phase) the effective property exhibits a decrease with an
nflection, until for prevailing low-value-property phase content
he lower bound (which may be zero in the case of porous materi-
ls) is asymptotically approached. Based on this argumentation,
hich is very similar to that leading to the Bruggeman–Landauer

elation20,21 or the third-order Miller bounds22 for the con-
uctivity of symmetric-cell materials, we may apply simple
olume-fraction weighting to obtain an “empirical” average of
he upper and lower bound, i.e.

= φ1E
+ + φ2E

−, (7)

here φ1 and φ2 are the volume fractions of the high- and low-
alue-property phase, respectively (with φ1 = 1 − φ2 and φ2 = φ

n the case of porous materials), and E+ and E− are the upper
ound (volume-weighted arithmetic average) and lower bound
volume-weighted harmonic average), respectively (the latter
eing zero for porous materials). Taking the Voigt bound as the
pper bound, we regain the power-law relation, Equation (5).
owever, inserting for E+ the upper Hashin–Shtrikman bound
e obtain the “empirical” average relation (“symmetric-cell
verage”)

emp.av. = E0

[
(1 − φ)2

1 + φ

]
. (8)
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Fig. 1. Relative Young’s moduli calculated from resonance frequency results
for porous alumina (prepared by TSC—full triangles or SCC—empty trian-
gles), ATZ composite ceramics (SCC—empty circles) and zirconia ceramics
(SCC—empty squares), and theoretical predictions of the porosity dependence
of the relative Young’s modulus: upper bounds (dotted thin top line: Voigt, full
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hin curve: upper Hashin–Shtrikman), dilute approximation (dashed thin bot-
om line) and other predictions (dotted bold: power-law, full bold: exponential,
ashed bold: symmetric-cell average).

To the best of our knowledge this relation is new and has not
een used in the elasticity literature before. Fig. 1 compares the
orosity dependences of the relative (or reduced) Young’s mod-
lus Er = E/E0, as predicted via Equations (1), (2), (4–6) and (8).
n concluding this paragraph we would like to emphasize that
ore sophisticated predictions are available in the literature,

n particular those based on the Eshelby solution for general
llipsoidal inclusions.23 All these models, however, require an
ndependent quantitative knowledge of the pore shape (e.g. in the
orm of an aspect ratio), which–even in those lucky cases where a
ore shape can be defined–is not readily accessible in most cases.
f course, in those few cases where it is, the approaches of Wu24

r Ondracek-Boccaccini25 may be applied to predict the Young’s
odulus of materials with ellipsoidal or spheroidal pores. How-

ver, whenever explicit pore shape information is lacking, the
ssumption of isometric pores seems the only feasible choice.
herefore we believe that the benchmark relations given above

Equations (4–6)], which owe their numerical parameter value
f 2 to the spherical pore solution (i.e. a special case of the
shelby solution), will retain their significance (not to say their
uperiority) for most practical purposes.

The effective Poisson ratio of porous materials is difficult to
redict. However, many authors seem to agree upon the fact that
he effective Poisson ratio of the porous material decreases with
ncreasing porosity when the Poisson ratio of the solid phase is
bove a certain value, and increase otherwise.26,27 The rationale
ehind this agreement is the assumption that the same type of
orosity dependence (though generally with different numeri-
al coefficients) is exhibited by two elastic moduli. That means,
t is assumed that a porous material for which the bulk mod-
lus depends on porosity according to the Hashin–Shtrikman
pper bound will exhibit the same porosity dependence also

or the shear modulus (model materials with this feature may
e called “Hashin–Shtrikman materials”). Alternatively, when
he porosity dependence of the Young’s modulus is described
y a power-law relation also the porosity dependence of the

o
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w
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hear modulus is expected to be of the power-law type (“power-
aw materials”) and in a completely analogous manner we may
efine “exponential materials”. The resulting expressions for the
ffective Poisson ratios are

HS = (1 + ν0) (1 + Bφ) − (1 − 2ν0) (1 + Aφ)

2 (1 + ν0) (1 + Bφ) + (1 − 2ν0) (1 + Aφ)
(9)

power = (1 + ν0) (1 − φ)[E]−[G] − 1 (10)

exponential = (1 + ν0) exp

(
([G] − [E] φ)

1 − φ

)
− 1 (11)

or Hashin–Shtrikman, power-law and exponential materials,
espectively, where

= 1 + ν0

2 (1 − 2ν0)
, (12)

= 2 (4 − 5ν0)

(7 − 5ν0)
, (13)

G] = 15 (1 − ν0)

7 − 5ν0
, (14)

E] = 3 (1 − ν0) (9 + 5ν0)

2 (7 − 5ν0)
, (15)

ee Refs.6,8,28. The dilute limit approximation for the porosity
ependence of the Poisson ratio is10

= ν0 + 3
(
1 − ν2

0

)
(1 − 5ν0)

2 (7 − 5ν0)
· φ. (16)

All these relations predict that the effective Poisson ratio of a
orous material should be independent of porosity when the
olid Poisson ratio is 0.2, in agreement with the differential
cheme approach prediction (Zimmermann approximation29)
nd other relations,28 while for solid Poisson ratios above 0.2 the
ffective Poisson ratio of the porous material exhibits a decreas-
ng trend with porosity (and vice versa). Note that–in contrast to
he elastic moduli–it makes no sense to define a relative (or
educed) Poisson ratio. In the case of two-phase composites
here the phase elastic moduli (subscript 1 and 2, respectively)

re of the same order of magnitude, the Poisson ratio of the
ully dense (pore-free) composite may be calculated in good
pproximation via the mixture rule6

= φ1ν1 + φ2ν2. (17)

. Experimental

Porous ceramics samples have been produced by two vari-
nts of slip casting, traditional slip casting (TSC, into porous
laster molds; in this method starch is used only as a pore-
orming agent) and starch consolidation casting (SCC, into
on-porous brass molds; in this method starch is used as a com-
ined pore-forming and body-forming agent: body formation

ccurs by starch swelling and gelatinization during heating to
pproximately 80 ◦C which is accompanied by water absorp-
ion from the suspension). The ceramic powders used in this
ork were submicron alumina powder (CT 3000 SG, Almatis,
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ermany, purity approximately 99.8% �-Al2O3, median grain
ize approximately 0.7–0.8 �m), submicron tetragonal zirconia
owder stabilized by 3 mol.%, i.e. 5 wt.%, Y2O3 (TZ-3Y-E,
osoh, Japan, containing >99.7 wt.% ZrO2 with a crystallite
ize of order tens of nanometers and 0.25 ± 0.1 wt.% Al2O3)
nd alumina-containing tetragonal zirconia composite powder
ATZ-80, Daiichi, Japan, a powder mix containing 80 wt.% ZrO2
nd 20 wt.% Al2O3, corresponding to a zirconia volume frac-
ion of 0.726). “Waxy” corn starch with a median granule size
f approximately 14 �m (Amioca Powder TF, National Starch

Chemical, UK) was used as a pore-forming agent (and a
ody-forming in SCC).

In both cases aqueous suspensions were prepared with
0–80 wt.% ceramic powder, 1 wt.% deflocculant (Dolapix
E64, Zschimmer & Schwarz, Germany) and starch concen-

rations ranging from 5 to 50 vol.% (related to ceramic powder)
n TSC and 10–50 vol.% in SCC. Details of the starch granule
ize (distributions) and shape as well as suspension preparation,
asting techniques (TSC and SCC) and resulting microstruc-
ures have been published in several papers, to which the reader

ay refer.30–32 After demolding, the sample bodies (cylinders
f approximately 7 mm diameter and 80 mm length for SCC and
ylinders of approximately 5 mm diameter and 60 mm length for
SC) were dried for 24 h at room temperature, followed by dry-

ng at 105 ◦C to constant mass. Subsequently, the bodies were
red according to a standard schedule (heating rate 2 ◦C/min,
h dwell at maximum temperature) at 1570 ◦C, 1520 ◦C and
490 ◦C for alumina, alumina-containing tetragonal zirconia
omposite (ATZ) and zirconia ceramics, respectively. Starch
urnout takes place during the heating period in the tem-
erature range 300–600 ◦C.32 Finally, the as-fired cylindrical
odies were saw-cut into samples with aspect ratio approx-
mately 10 for the elastic property measurements. The bulk
ensity ρ was determined both from the mass and the geomet-
ical dimensions of the samples as well as by the Archimedes

ethod. Total porosites φ were determined using the relation

= 1 − ρ

ρ0
, (18)

here ρ0 is the theoretical density of the fully dense, i.e. pore-
ree ceramics (4.0 g/cm3, 5.52 g/cm3 and 6.1 g/cm3 for alumina,
TZ and zirconia, respectively).

The (adiabatic) elastic constants (Young’s modulus E and
oisson ratio ν) were measured using a dynamic tech-
ique, the resonant frequency method.33 The measurements
ere performed with a resonant frequency tester (Erudite,
NS Electronics Ltd., London, UK) in the frequency range
0 kHz–1 MHz, using a unit based on electrostatic excitation
nd sensing of mechanical longitudinal vibrations. This elec-

ν = ln(cA/cB) + (Q + S(d/2λB)) ln
(
1 + (d/2

(P + R(d/2λA)) ln
(
1 + (d/2λA)2)
rostatic variant of the resonant frequency method is especially
uitable for measuring small specimens because of the minimum
umber of constructional elements which might contribute to the
easured spectrum with their own frequencies.

o
(
t
H

eramic Society 29 (2009) 2765–2771

Due to the cylindrical shape of the samples, it is possible to
etermine the Young’s modulus and Poisson ratio from longitu-
inal vibrations, evaluated on the basis of Pochhammer’s theory
f the propagation of stress waves in cylindrical bodies.34,35 This
pproach enables an exact analytical solution to be obtained and
nsures a rather precise description of the geometrical disper-
ion of stress waves for materials with negligible attenuation
i.e. purely elastic materials). For materials with Poisson ratios
etween 0.15 and 0.5 and specimens with appropriate geome-
ry, i.e. d/λn ratios in the range 0–0.6 (d = specimen diameter,
n = wavelength of the n-th resonant frequency mode, i.e. fun-
amental mode n = 1, first overtone n = 2, second overtone n = 3
tc.) the Young’s modulus can be experimentally obtained from
n approximation to the exact analytical solution (approxima-
ion to the first branch of Pochhammer frequency equation),36

hich can be written as

= ρc2

[
1 +

(
d

2λn

)2
]−2[Pν+Q+(Rν+S)(d/2λn)]

. (19)

In this relation ρ is the density (in the case of porous mate-
ials the bulk density of the specimens), c the wave velocity
longitudinal phase velocity). For the case of longitudinal res-
nant frequencies the wave velocity can be determined by the
elation33

= 2Lfn

n
, (20)

here L is the specimen length and fn the resonant frequency
f the n-th longitudinal vibration mode. Further, the wavelength
orresponding to the longitudinal resonant frequency is related
o the specimen length via the relation λn = 2L/n, the numerical
arameters are p = −6.35, Q = 1.34, R = 4.0 and S = −4.5, and
he Poisson ratio can be determined from two different reso-
ant frequencies (modes denoted by indices A and B) via the
elation36

) − (Q + S(d/2λA)) ln
(
1 + (d/2λA)2)

+ R(d/2λB)) ln
(
1 + (d/2λB)2) . (21)

For maximum precision the two frequencies (A and B) have
o be maximally apart, of course without exceeding the range of
alidity of Equation (1), i.e. d/λn < 0.6 and measured ν values
n the range 0.15 ≤ ν < 0.5. The error in the Young’s modulus is
sually estimated to be <1%,37 while the error in the Poisson
atio can attain several percent.38,39

. Results and discussion

Fig. 1 shows relative Young’s moduli Er = E/E0, calculated
rom the measured effective Young’s moduli E (determined by
he resonant frequency method) and the E0 values based on
iterature data (400, 251 and 210 GPa for alumina, ATZ and
irconia, respectively40) for porous alumina (prepared via TSC

r SCC, respectively), ATZ composite and zirconia ceramics
both prepared via SCC only). All Er values are clearly below
he power-law prediction and, therefore, far below the upper
ashin–Shtrikman bound. There is of course no doubt that the



ean Ceramic Society 29 (2009) 2765–2771 2769

d
h
t
e
a
p
r
e
(
s
o
f
t
h
f
t
t
e
w
b
o
d
(
a
d
p

f
e
P
t
d
s
t
w
m
f
o

F
s
H
l
b

Fig. 3. Poisson ratio of porous ATZ composite ceramics (prepared by
SCC—empty symbols); measured values and predictions for Hashin–Shtrikman
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ependence is nonlinear. Irrespective of the slight tendency to
igher values for the zirconia-based ceramics as compared to
he pure alumina ceramics (see below) it can be said that the
xponential relation [Equation (6)] and the “empirical” aver-
ge relation [Equation (8)] provide the best parameter-free
redictions of the observed porosity dependence. It has to be
emembered that Equation (6) can be derived via a functional
quation approach,17,18 and, very recently, the form of Equation
6) has been attributed to a high degree of disorder in the pore
pace.41 On the other hand, for Equation (8) no rigorous the-
retical foundations are known. This might be an argument in
avor of Equation (6), even in cases where Equation (8) seems
o describe the porosity dependence equally well or better. For
igher porosities it seems that the Er values are slightly higher
or the zirconia-based ceramics than for the alumina. Of course,
his finding should not be overinterpreted, because it may be due
o an accidental sample-to-sample variation or slightly under-
stimated E0 values (and would certainly require verification
ith a broader data base, before definitive conclusions should
e made). We note, however, that a similar tendency has been
bserved for the relative thermal conductivity of alumina.19 The
ifference between TSC values (full triangles) and SCC values
empty triangles) seems to be insignificant, as evidenced for
lumina in Fig. 1, indicating that the important (i.e. property-
etermining) microstructural features resulting from the two
rocesses are very similar.

Fig. 2 shows the porosity dependence of the Poisson ratio
or porous alumina ceramics. The errors are relatively high, as
xpected, but the results can be interpreted in the sense that the
oisson ratio does not change substantially with porosity (up

o a porosity value of 50%). This is the expected result pre-
icted by all models considered, since the Poisson ratio of the
olid phase (ν0 = 0.23 for pure alumina when φ = 0) is very close
o 0.2.40 For the zirconia-based ceramics (see Figs. 3 and 4),

hich have been prepared with porosities of up to approxi-
ately 45%, the solid Poisson ratio is higher (0.29 and 0.31

or ATZ and zirconia, respectively)40 and a decreasing trend is
bserved. A similar trend has been observed by Puchegger et

ig. 2. Poisson ratio of porous alumina ceramics (prepared by TSC–full
ymbols or SCC–empty symbols); measured values and predictions for
ashin–Shtrikman materials (dashed thin line), linear materials (dotted thin

ine), power-law materials (dotted bold curve) and exponential materials (dashed
old curve), respectively.

a
s
t
O

F
b
t
c

aterials (dashed thin line), linear materials (dotted thin line), power-law
aterials (dotted bold curve) and exponential materials (dashed bold curve),

espectively.

l. for an alumina–zirconia composite with 82.5 vol.% Al2O3
nd 17.5% ZrO2, where the measurements have been made by
similar dynamic method (resonant beam technique).42 While

or the ATZ composite it is not easy to decide which predictive
odel is to be preferred, for zirconia (highest ν0) the prediction

or exponential materials, Equation (11), seems to be the best.
hat means, when explicit measurement results are not available,
quation (11) seems to be a useful relation for estimating the
oisson ratio of porous alumina- and zirconia-based ceramics
ith porosities up to approximately 50%. It has to be empha-

ized, however, that the porosity dependence up to 50% porosity
s relatively weak for all these ceramics, wheras extrapolations
o porosities significantly higher than 50% are questionable and
ould require further investigation. In particular, although there

re papers reporting slightly negative Poisson ratios for cellular
eramics,43,44 the fundamental question as to the conditions of
possible occurrence of auxetic behavior at high porosities is
till unsolved.28 The only definitive statement that can be made
oday is that the Poisson ratio is not a function of porosity alone.
r more precisely (and less trivial), it is sure that even to the

ig. 4. Poisson ratio of porous zirconia ceramics (prepared by SCC–empty sym-
ols); measured values and predictions for Hashin–Shtrikman materials (dashed
hin line), linear materials (dotted thin line), power-law materials (dotted bold
urve) and exponential materials (dashed bold curve), respectively.
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egree of approximation to which the other elastic constants
re functions of porosity alone the Poisson ratio is not. How-
ver, the main influential microstructural parameter in addition
o porosity is yet to be identified.

. Summary and conclusion

Well-known theoretical relations for the prediction of the
orosity dependence of the Young’s modulus have been briefly
ummarized, a new relation has been proposed (the “empirical”
ymmetric-cell average) and recently derived predictive rela-
ions for the Poisson ratio have been recalled. Young’s moduli
nd Poisson ratios have been measured for porous alumina and
irconia-based ceramics (prepared with corn starch as a pore-
orming agent) via the resonant frequency technique, using an
pproximation to the Pochhammer relation for data evaluation.
t has been found that the resulting Young’s moduli are far below
he upper Hashin–Shtrikman bound and also clearly below the
ower-law relation. Both the exponential relation and the newly
roposed symmetric-cell average provide a reasonable predic-
ion of the porosity dependence of the Young’s modulus (the
ormer with the advantage of being theoretically rather well
ounded). Systematic differences in the relative Young’s moduli
etween alumina ceramics prepared via traditional slip cast-
ng (TSC) and starch consolidation casting (SCC), respectively,
ould not be confirmed (indicating that the property-determining
icrostructural features are essentially the same) and the differ-

nces in the relative Young’s moduli of alumina ceramics and
irconia-based ceramics are too small to be conclusive. Up to
orosities of approximately 50% the porosity dependence of the
oisson ratio is rather weak, but the decreasing trend for the
irconia-based ceramics can be well described by the relation
ssuming exponential material behavior.
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